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ABSTRACT
Estimating the 3D human pose from the monocular video is chal-
lenging mainly due to the depth ambiguity and inaccurate 2D de-
tected keypoints. To quantify the depth uncertainty of 3D human
pose via the neural network, we imbue the uncertainty modeling
to depth prediction by using evidential deep learning (EDL). Mean-
while, to calibrate the distribution uncertainty of the 2D detection,
we explore a probabilistic representation to model the realistic dis-
tribution. Specifically, we exploit the EDL to measure the 𝑑𝑒𝑝𝑡ℎ
prediction uncertainty of the network, and decompose the 𝑥 − 𝑦
coordinates into individual distributions to model the deviation
uncertainty of the inaccurate 2D keypoints. Then we optimize the
depth uncertainty parameters and calibrate the 2D deviations to
obtain accurate 3D human poses. Besides, to provide effective la-
tent features for uncertainty learning, we design an encoder which
combines graph convolutional network (GCN) and transformer
to learn discriminative spatio-temporal representations. Extensive
experiments are conducted on three benchmarks (Human3.6M, MPI-
INF-3DHP, and HumanEva-I ) and the comprehensive results show
that our model surpasses the state-of-the-arts by a large margin.

CCS CONCEPTS
• Computing methodologies → Motion capture.

KEYWORDS
3D human pose; uncertainty learning
ACM Reference Format:
Jinlu Zhang, Yujin Chen, and Zhigang Tu. 2022. Uncertainty-Aware 3D
Human Pose Estimation from Monocular Video. In Proceedings of the 30th
ACM International Conference on Multimedia (MM ’22), October 10–14, 2022,
Lisboa, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3503161.3547773

1 INTRODUCTION
3D human pose estimation aims at reconstructing the coordinates of
3D human body joints from images or detected 2D keypoints. This
task can be applied to a wide range of applications, such as skeleton
action recognition [55, 61], motion retargeting [1], and human
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Figure 1: The 𝑑𝑒𝑝𝑡ℎ and 𝑥 −𝑦 coordinates have different types
of errors (depth ambiguity and noisy 2D data), we optimize
them in terms of depth uncertainty (blue area) and 2D prob-
abilistic representation (orange area), respectively. We com-
pare our approach with the state-of-the-art 2D-to-3D lift-
ing methods (VP3D [43], Attention [31], Anatomy [5], Pose-
Former [63], and CDG [17]) from the perspective of different
coordinates. The spatial-temporal (S-T) encoder is applied to
model the spatial-temporal relationships in video.

animation [57]. In recent years, this field has achieved notable
progress, many solutions [4, 5, 20, 27, 31, 35, 43, 51, 60, 63], which
under a 2D-to-3D lifting pipeline, have been exploited to detect 2D
keypoints from images and lift them to obtain 3D coordinates.

The 2D-to-3D lifting pipeline can imbue 2D keypoints as power-
ful intermediate representations and produce reasonable 3D pre-
dictions, however, it has two serious issues. First, due to the lack
of depth information in the 2D detection and inherent epistemic
uncertainty of neural networks, the predictions are not always re-
liable. Consequently, if the model can know whether its outputs
are reliable, the prediction could be optimized and more discrimi-
native for downstream applications. Second, the commonly used
keypoints representations are defined with human experience, but
there are no such absolute correct positions. Especially for the 2D
keypoints, which are captured from a single view, even the state-of-
the-art detectors still produce noise 2D keypoints. Although some
works [7, 52, 59] have considered the uncertainty of the noisy data
and modeled it during training, the distribution deviation of the
detected 2D data is ignored, which needs to be explicitly calibrated.
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Test Set
Train Set SH [39] CPN [9] HRNet [46] 2D GT with noise

SH [39] 56.1 56.8 58.3 67.3
CPN [9] 67.2 44.6 48.7 56.6
HRNet [46] 64.7 49.9 42.4 55.4
2D GT with noise 54.2 39.4 38.1 31.9

Table 1: Trained and evaluated the previous SOTA
method [63] on different input 2D data. We apply SH [39],
CPN [9], and HRNet [46] to obtain different 2D keypoints.
The 2D ground truth (GT) with noise is obtained by project-
ing the 3D poses to 2D space and then adding the Gaussian
noise to simulate the input data noise. The blue color
indicates training and testing on the same detector data. The
performance is better when the MPJPE is lower.

Our key observation is that these two issues of the current 2D-to-
3D lifting methods lead to unreliable estimation results of neural
networks during inference, and these issues are supposed to be
addressed respectively.

To learn more valid depth information from monocular input,
most previous works tried to utilize the temporal information of
video frames by introducing various networks, such as temporal
convolution network (TCN) [5, 31, 43], Transformer [26, 27, 60, 63],
and graph convolution network (GCN) [4, 59]. The uncertainty of
depth prediction has been considered implicitly by just adding more
data augmentations [15, 58] or generating diverse hypotheses of
feasible 3D poses [27, 52], while there is no method that directly
estimates an exact representation to imitate the depth uncertainty.

As for the 2D detected keypoints, we find that there are different
deviations among different 2D detectors, leading to distribution
uncertainty of the 2D detection keypoints. It is caused by the inter-
nal distribution of different pre-trained detectors and degrades the
estimation accuracy of 𝑥−𝑦 coordinates. As shown in Table 1, using
different 2D detected keypoints sets as the input of the 2D-to-3D
lifting network results in biased 3D predictions. The estimated 3D
results are positively correlated with the 2D keypoints set from
the same detector while having a large degradation on test sets
from other detectors. The results evaluated on the 2D ground truth
(GT) have different degrees of performance improvement. Table 1
demonstrates that there are different deviations caused by different
2D detectors, and we summarize this phenomenon as 2D distri-
bution uncertainty. However, it is often regarded as the aleatoric
noise in the 3D human pose estimation task without being specially
optimized. To our knowledge, there are no methods exploring to
model the 2D distribution uncertainty by calibrating deviations
between the input detections and the 2D GT.

Motivated by the above observations, we propose an uncertainty-
aware 3D human pose estimation method, where the depth uncer-
tainty and the 2D distribution uncertainty are modeled separately
(see Figure 1). Firstly, we present a novel evidential pose estimation
module to quantify the depth uncertainty of predictions during
training. Specifically, we utilize a decoder to obtain the high-order
evidential parameters of the estimated output. And then, we com-
pute the prediction and determine whether it is reliable (called
𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) by using the decoded parameters and GT. The area of the
blue region at the top-right of Figure 1 visualizes the optimization
process of the depth uncertainty. With less area of blue region, the

depth uncertainty on model prediction becomes lower. In this way,
the uncertainty on depth prediction can be estimated and subse-
quently optimized by minimizing the well-designed loss function.

Secondly, the distribution uncertainty from the 2D keypoint
detector is modeled by the explored probabilistic representation.
We exploit different parameters of Gaussian prior distribution to
represent the uncertainty of the input 2D keypoints. The parame-
ters of the input 𝑥 − 𝑦 coordinates are obtained by the distribution
uncertainty decoder. Then the deviations of the 2D detected input
could be calibrated according to the 2D annotations projected from
the 3D GT. Since the 2D GT contains aleatoric uncertainty due
to unavoidable annotation mistakes, we project the distribution
parameters to a 1D discrete vector rather than directly supervising
the parameter regression to avoid obtaining an absolute prior dis-
tribution. The proposed uncertainty-aware method on depth and
2D detection input is light-weight and plug-and-play, which means
it can be easily incorporated into other 2D-to-3D methods.

Finally, we design a spatial-temporal encoder that combines the
GCN [22] and transformer [50]. GCN is widely used in skeleton-
based visual tasks [4, 55], which has good interpretability for spatial
human joints structure. Therefore, we introduce GCN to keypoints
embedding and output regression to better preserve the spatial
correlation of joints. On the other side, transformer is applied to
model the temporal relationships among input frames to improve
the smoothness and reduce jitters of the output pose sequence. The
ability of global sequence modeling enables the model to capture
the frame-to-frame interrelationships of the input keypoints.

We evaluate the proposed method on three public benchmarks,
i.e. Human3.6M [18], MPI-INF-3DHP [36], and HumanEva-I [45].
The quantitative and qualitative experimental results show that our
method is effective to improve the performance of 3D human pose
estimation. Our contributions can be summarized in three-fold:

• Wepropose an uncertainty-awaremethod to quantify and op-
timize the depth and 2D detection input respectively, which
improves the performance on depth ambiguity and 2D key-
point errors for 3D human pose estimation.

• Evidential deep learning is introduced to quantify the predic-
tion uncertainty of depth, and a probabilistic representation
is exploited to model the distribution uncertainty of the 2D
detected input.

• An effective encoder based on GCN and transformer is pro-
posed to better model the spatial-temporal correlation of
human joints.

2 RELATEDWORK
3D human pose estimation in video. With the development of
deep learning, many data-driven methods has shown remarkable
progress. According to whether 2D human pose is represented
in the 2D image space, these methods can be divided into end-
to-end and 2D-to-3D lifting pipelines. The end-to-end pipelines
directly regress the 3D poses from the input images with large
model parameters and difficulties. There are approaches [8, 10, 42,
47, 48] followed this pipeline in the early stage. And the 2D-to-3D
lifting pipeline [12, 30, 33, 35, 54, 62, 64] overcomes the issues by
first estimating 2D keypoints in the RGB observations, benefiting
from the outstanding performance of 2D keypoint detectors [9, 39,
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46]. Therefore, we follow the 2D-to-3D lifting pipeline and apply our
method to the video sequence. For the 3D human pose estimation
task, the depth ambiguity challenge is commonly discussed, and
there are two main solutions to solve this issue: temporal-based
methods and generative-based methods. The first solution [5, 31,
43, 49] prefers to utilize the temporal information to smooth the
output pose sequence. And the second solution [27, 52] generates
many potential pose proposals to model the uncertainty of the
depth ambiguity. However, there are no methods considering to
estimate and this uncertainty during model training. Therefore,
different from the above 3D pose estimation methods, we introduce
the proposed uncertainty-aware method to model depth and 2D
detection input uncertainty in 3D human pose.

Uncertainty learning for depth ambiguity.Uncertainty learn-
ing aims to estimate the uncertainty representation of a determined
neural network. It is important for the tasks where the data sources
are highly inhomogeneous or rare. In recent years, many research
works have shown an increased interest in estimating uncertainty
in deep neural networks (DNNs) [2, 3, 34, 44]. Some methods based
on Bayesian deep learning introduced the uncertainty estimation
in kinds of ways: variational inference and dropout [14, 21, 38],
ensemble [23]. These methods rely on the expensive samples to
estimate predictive variance [2]. The evidential deep learning over-
comes above drawback and has been applied to many tasks e.g.,
action recognition [3] and classification [44]. It directly predicts
the related parameters of uncertainty without repeat sampling. We
introduce the evidential deep learning method [2] and then design
a more concise constraint for 3D human pose task to better model
depth uncertainty. We estimate the uncertainty of model prediction
on depth and then optimize it to enable our model to predict the
depth uncertainty and improve the accuracy of estimation results.

Representations of human pose estimation. There are differ-
ent kinds of ways to represent the human pose. Most of recent 3D
pose works [6, 11, 31, 43, 63] obtained 3D joint locations directly
from the neural network. It is simple and intuitive but lacks much
prior, e.g., human skeleton structure and probabilistic distribution
of input data. Some researchers [5] proposed to decompose the 3D
pose estimation task into bone direction prediction and bone length
prediction. And many others [54, 59, 62] utilized the GCN [22] to
model the human skeleton from the perspective of graph connec-
tivity. Besides, the probabilistic distribution of input data is another
effective way to represent human pose. And there have been many
2D human pose works [13, 24, 28, 53] to apply the heatmap as main
representation of keypoints. It enables network to better learn lo-
cation and corresponding probabilistic information. However, this
representation of input data has been absent. Our method is similar
to the pipeline of constructing the heatmap in the 2D human pose
task, but we decompose the 𝑥 − 𝑦 coordinates rather than making
a two-dimensional distribution, and our input is keypoints rather
than images, which helps to reduce much computing cost. Besides,
we perform it on input keypoints instead image space.

3 OUR METHOD
The pipeline of the proposed method is illustrated in Figure 2. Our
method enables to estimate 3D human pose with uncertainty in-
formation from the monocular video end-to-end. The input 2D

keypoints are taken into the model and reconstructed to a sequence
of 3D poses (seq2seq). Specifically, first, we use the 2D detector to
produce a sequence of 2D keypoints 𝐾 = {𝑋𝑖, 𝑗 ∈ R2, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑇 }
in the image space, where 𝑁 and 𝑇 indicate the joints of the de-
fined human skeleton and the number of frames of the input video.
We take the input keypoints 𝐾 to the spatial embedding layer to
learn the initial relationships of joints. The embedding layer is ex-
ploited with a single GCN. Second, the spatial GCN module and the
temporal transformer module are used to model the high dimen-
sional feature in the spatial and temporal domains, respectively.
The depth and 2D uncertainty are modeled in different decoders
and optimized by loss functions to enable the backbone to learn the
uncertainty information accurately. Last, the spatial regression head
obtains the output 3D pose sequence 𝑍 ∈ R𝑁×𝑇×3 from the feature
𝑍 ∈ R𝑁×𝑇×𝑑 , where 𝑑 is the hidden dimension of the backbone.
The regression head is constructed by a GCN layer to maintain the
spatial relationship of the skeleton.

In brief, we introduce the uncertainty of depth prediction in
subsection 3.1 and 2D detection keypoints in subsection 3.2, respec-
tively. The spatial-temporal encoder is described in subsection 3.3.

3.1 Depth uncertainty estimation
3.1.1 Background derivation. Different from the ordinary prob-
ability, we introduce the subjective logic to measure the uncertainty
of the model. Considering the training phase of pose estimation in
depth dimension, the two-norm of errors (MPJPE or P-MPJPE) is
considered as the optimization item normally. It can be formally
written as:

L𝑛𝑜𝑟𝑚 = ∥𝑦 − 𝑓 (𝑥,𝑊 )∥2, (1)

where 𝑦 indicates the prediction of input data 𝑥 ,𝑊 and 𝑓 are the
parameter weights and the mapping function of neural network.
The network is enabled to fit the correct prediction results and learn
the distribution feature of the given training dataset. However, the
model can not model the uncertainty of depth ambiguity because
each prediction is seen as absolute correct during inference. To
imbue the uncertainty of themodel prediction on depth information,
we assume the depth data following Gaussian distribution, which
can be represented as 𝑥 ∼ N

(
𝜇, 𝜎2

)
. With the unknown 𝜇 and 𝜎2,

we can place the Gaussian distribution on 𝜇 and inverse-chi-squared
distribution on 𝜎2 based on probability theory:

(𝜇 | 𝜎2) ∼ N (𝜇0,
𝜎2

𝑘
), 𝜎2 ∼ Inv−𝜒2 (𝛼, 𝛽)) , (2)

where IG is inverse-chi-squared distribution, (𝜇0, 𝑘, 𝛼, 𝛽) indicate
relative high-order parameters, and the 𝜇0 is the locations of poses.
Therefore, the expectation and variance of unknown 𝜇 can be com-
puted as:

E[𝜇] = 𝜇0,Var[𝜇] =
𝛽

𝑘 (𝛼 − 1) , (3)

where the E[𝜇] indicates the prediction of depth, and the Var[𝜇]
represents the model uncertainty. More detailed derivations are
shown in the supplementary materials. Based on the above deriva-
tions, we can obtain the depth uncertainty high-order parameters
(𝜇0, 𝑘, 𝛼, 𝛽).
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Figure 2: Overview of the proposed method. We employ the GCN-Transformer encoder to model the spatial-temporal rela-
tionships in input keypoints sequence. The encoder consists of GCN for spatial prior and transformer for temporal domain.
Then the uncertainty parameters of 𝑑𝑒𝑝𝑡ℎ and 𝑥 − 𝑦 are decoded, respectively. The parameters are supervised by different loss
functions to enable the model to learn uncertainty information and calibrate input distribution deviation. The MPJPE under
Protocol #1 is the main metric during training.

3.1.2 Evidential 3D pose estimation. In this paper, we pro-
pose a novel uncertainty estimation method to formulate the 3D
human pose task from the evidential deep learning (EDL) perspec-
tive. To concisely and effectively model uncertainty, we design the
constraints as follow. We first need to imbue the above distribu-
tions to encoder training to learn the probabilistic modeling. To
this end, we construct the loss item for parameters (𝑘, 𝛼, 𝛽) of un-
certainty representation as

��� 𝛽

𝑘 (𝛼−1) − Var[𝜇]
��� , where 𝜇 indicates

the depth coordinates of samples. Besides, in regression problems,
due to the regression space is infinite and unbounded, we have to
design the regularized item for prediction errors. We follow the
previous work [2] and define the 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 as (2𝑘 + 𝜈). The uncer-
tainty and 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 are inversely proportional and they are used to
quantify the uncertainty of model prediction. During the training
phase, we regress the uncertainty of each keypoint in depth using
a simple decoder. And the regression parameters of keypoint are
(𝜇0, 𝑘, 𝛼, 𝛽). Then we optimize the 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 on prediction errors:
( |𝜇 − 𝜇0 | · (2𝑘 + 𝜈)), where 𝜇0 is the prediction, and |𝜇 − 𝜇0 | indi-
cates the prediction errors in depth. By optimizing 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 on
pose errors, the encoder can learn to refine the depth prediction.
Therefore the final loss of depth uncertainty can be formulated as:

L𝑒 =
���� 𝛽

𝑘 (𝛼 − 1) − Var[𝜇]
���� + (|𝜇 − 𝜇0 | · (2𝑘 + 𝜈)) (4)

In this way, we can not only predict the depth coordinate location
𝜇0, but also estimate the related parameters (𝑘, 𝛼, 𝛽) to illustrate
the model uncertainty. During inference we can chose to regress

the evidential parameters or not because the encoder has already
modeled uncertainty of depth prediction implicitly.

3.2 Distribution uncertainty estimation of 2D
detection

Given a 2D detection keypoint sequence 𝐾 with 𝑁 joints and 𝑇
frames, we decompose the 𝑥 −𝑦 into two individual representation
to learn the distribution of the input data. We assume that there is
an approximate Gaussian distribution for 𝑥 and 𝑦 of each keypoint,
and take the Gaussian distribution as the prior of 2D GT projected
from 3D data:

𝐺 (𝑝 |𝜇, 𝜎2) = M ⊙ 1
√
2𝜋𝜎

exp
(
−(𝑝 − 𝜇)2

2𝜎2

)
, 𝑝 ∈ R𝑠 (5)

where 𝑝 is the 𝑠 size discrete coordinate vector like (𝑥𝑜 , 𝑥1, ..., 𝑥𝑠 ) or
(𝑦𝑜 , 𝑦1, ..., 𝑦𝑠 ),M is the learnable projection matrix, 𝜇 and 𝜎2 indi-
cate the coordinate locations and variance of the prior distribution.
The parameterized matrixM enables the model to learn aleatoric
noise of GT caused by annotation mistakes during training. We use
𝐸𝑞. 5 for both 𝑥 and 𝑦 coordinate representation. During training,
we apply the 2D distribution decoder to obtain the discrete vectors
𝑝 ∈ R𝑁×2×𝑠 of each coordinate of the keypoints. The decoder is
constructed by a MLP with Layer Norm (LN). We use the Kullback-
Leibler (KL) divergence to constrain 2D distributions between the
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input data and projected 2D GT, which is formulated as:

L𝐾𝐿 (𝑝 ∥𝑝) = −
∫

𝑝 (𝑚) ln 𝑝 (𝑚)𝑑𝑚 −
(
−
∫

𝑝 (𝑚) ln 𝑝 (𝑚)𝑑𝑚
)

= −
∫

𝑝 (𝑚) ln
[
𝑝 (𝑚)
𝑝 (𝑚)

]
𝑑𝑚,

(6)
where𝑚 is input coordinates 𝑥 or 𝑦, and 𝑝, 𝑝 are predicted distri-
bution of input data and projected distribution of 2D ground truth.
In this way, we can model the uncertainty of input data from the
probabilistic perspective.

3.3 GCN-Transformer encoder (GTE)
As shown in Figure 2, the backbone of model consists of two main
modules: spatial GCN module and temporal transformer module.
The two modules effectively learn the spatial and temporal correla-
tions in video sequence to provide robust feature for uncertainty
modeling in Section 3.1 and Section 3.2.

3.3.1 Spatial GCNmodule. We exploit the GCNwith a learnable
parameterized matrix and residual connection based on the vanilla
GCN model [22] to model the spatial correlation of human joints.
The operation of GCN layer on input 𝑍 𝑙 can be formulated as:

𝐺𝑐𝑜𝑛𝑣 (𝑋 𝑙+1) = 𝜎
(
𝑊𝑗𝑍

𝑙 (𝑊𝑚 ⊙ 𝐷− 1
2𝐴𝐷− 1

2 )
)
, (7)

where 𝑋 𝑙+1 ∈ R𝑁×𝑑𝑜𝑢𝑡 indicates output of 𝑙 + 1-th layer,𝑊𝑗 ∈
R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 represents the learnable transformmatrix with input (𝑑𝑖𝑛)
and output (𝑑𝑜𝑢𝑡 ) channel dimension, and𝑊𝑚 ∈ R𝑁×𝑁 indicates
the parameter matrix used for learning different weight of pre-
defined skeleton adjacent matrix 𝐴, and it is symmetrically normal-
ized.

The spatial graph embedding layer is performed by the proposed
GCN when the input 𝑍 𝑙 is set to 2D keypoints 𝐾 ∈ R𝑇×𝑁×2, where
𝑇 is paralleled. And the spatial GCN as shown in the Figure 2 is
exploited by a residual connection. It enables model to efficiently
learn both initial spatial features and high-level features and speed
up convergence. The complete spatial GCN module can be written
as:

𝑍 𝑙+2 = 𝑍 𝑙 +𝐺𝐸𝐿𝑈 (𝐿𝑁 (𝐺𝑐𝑜𝑛𝑣 (𝑍 𝑙+1))) . (8)

We choose the GELU function to keep it similar to the temporal
module in Section 3.3.2. The designed spatial GCN module is light-
weight in computation cost and parameters, and it can be easily
extended.

3.3.2 Temporal transformermodule. The temporal transformer
module in the proposed encoder is applied to learn temporal corre-
lation across the sequence of frames. We follow the vanilla multi-
head attention [50] to obtain global correlations among frames.
The multi-head self-attention in temporal transformer performs
on frame-level feature, which is the output of spatial GCN mod-
ule 𝑍 ∈ R𝑁×𝑑𝑜𝑢𝑡 . We take the paralleled frame dimension in spatial
GCN and then make the joints paralleled, the input of module turns
out to be 𝑍 ∈ R𝑇×𝑑𝑡 , where 𝑑𝑡 = 𝑑𝑜𝑢𝑡 . The operation of each head
can be formulated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = Softmax
(
𝑄𝐾⊤/

√︁
𝑑𝑡

)
𝑉 , (9)

where {𝑄,𝐾,𝑉 } ∈ R𝑇×𝑑𝑡 are projected from the input 𝑍 , and 𝑇
indicates the number of tokens, which is equal to frames of input
sequence.We repeat the temporal transformer module for𝑛 times to
model efficient global temporal relationships of the input sequence.

3.4 Loss Functions
The total loss function of the proposed method consisting of tree
items is written as follow:

L𝑡𝑜𝑡𝑎𝑙 = L𝑀𝑃 𝐽 𝑃𝐸 + L𝑒 + L𝐾𝐿 . (10)

With the internal error computing of uncertainty loss L𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
on depth dimension, we can supervise the estimation result of
the depth dimension. Therefore the MPJPE loss L𝑀𝑃 𝐽 𝑃𝐸 can be
only applied to supervise 2D coordinates. The constraint of 2D
distribution L𝐾𝐿 is the last loss function we apply during training.

4 EXPERIMENTS
4.1 Implementation Details
The proposed method was implemented on the Pytorch [40] and
the experiments were conducted on a single NVIDIA RTX 2080Ti
GPU. The 2D detector could be any off-the-shelf models, we choose
CPN [9] and HRNet [46] as our detectors, because CPN [9] has been
widely applied, and HRNet [46] has better detection performance.
We apply the AdamW [32] as our model optimizer with about 125
training epochs and 2048 batch size. The learning rate is initially
set to 5 × 10−4 and 8 × 10−5 for the GCN module and the trans-
former module respectively to obtain better and faster convergence
during training. The learning rate is decayed by the exponential
strategy every 2000 iteration steps. The 2D data from 2D keypoint
detectors (CPN [9], HRNet [46]) and the 2D GT are applied in the
experiments to analyze the performance of our method.We conduct
two settings to the input 2D keypoint sequence with length 𝑇 = 81
and 𝑇 = 300 on H36M, the former is set for comparing with the
previous SOTAs, and the latter is introduced to achieve better per-
formance. For the other benchmarks 3DHP and HumanEva-I, we set
𝑇 to 27 and 43 respectively following the previous works [11, 43, 63].

4.2 Datasets and Metrics
Human3.6M (H36M) [19]. Following the previous approaches [4,
33, 35, 62, 63], we take H36M as one of our evaluation datasets,
which is the most widely used benchmark, containing 3.6 million
video frames captured from four synchronized cameras with dif-
ferent poses at 50 Hz. We adopt the 17-joint pose and use the five
subjects S1, S5, S6, S7, and S8 for training, and the other two sub-
jects S9, S11 for testing. The Mean Per Joint Position Error (MPJPE)
metric is computed under Protocol #1 (MPJPE between the ground
truth (GT) and the estimated 3D poses) and Protocol #2 (aligned
with the GT by the rigid transformation, also named P-MPJPE).
MPI-INF-3DHP (3DHP) [36] is a recent large-scale 3D human
pose benchmark, which consists of both constrained indoor and
complex outdoor scenes, including 8 actions performed by 8 actors
that are recorded by 14 camera views. We follow the previous
works [17, 29, 37, 51] to split the training set and the testing set.
We report the area under the curve (AUC), percentage of correct
keypoints (PCK), and MPJPE as our evaluation metrics.
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Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
Pavlakos et al. [42] CVPR2017 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Martinez et al. [35] (SH) ICCV2017 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Pavlakos et al. [41] CVPR2018 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Pavllo et al. [43] (CPN, 𝑇=243)(†) CVPR2019 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cai et al. [4] (CPN, 𝑇=7)(†) ICCV2019 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Yeh et al. [56](†) NeurIPS2019 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Liu et al. [31] (CPN, 𝑇=243)(†) CVPR2020 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Wang et al. [51] (CPN, 𝑇=96)(†) ECCV2020 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5
Xu et al. [54](𝑇=1) CVPR2021 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Zeng et al. [59](†) ICCV2021 43.1 50.4 43.9 45.3 46.1 57.0 46.3 47.6 56.3 61.5 47.7 47.4 53.5 35.4 37.3 47.9
Zheng et al. [63](CPN, 𝑇=81)(†) ICCV2021 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Chen et al. [5](†)(CPN, 𝑇=243) TCSVT2021 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
Hu et al. [17](CPN, 𝑇=96)(†) MM2021 38.0 43.3 39.1 39.4 45.8 53.6 41.4 41.4 55.5 61.9 44.6 41.9 44.5 31.6 29.4 43.4
Ours(CPN, 𝑇=81)(†) 39.6 43.0 37.7 40.5 42.2 50.6 41.1 41.9 49.1 54.8 41.8 43.9 42.6 31.8 30.6 42.1
Ours(CPN, 𝑇=300)(†) 37.9 41.9 36.8 39.5 40.8 49.2 40.1 40.7 47.9 53.3 40.2 41.1 40.3 30.8 28.6 40.6
Wang et al. [51](HRNet, 𝑇=96)(†) ECCV2020 38.2 41.0 45.9 39.7 41.4 51.4 41.6 41.4 52.0 57.4 41.8 44.4 41.6 33.1 30.0 42.6
Wehrbein et al. [52](HRNet, 𝑇=200)(†) ICCV2021 38.5 42.5 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
Hu et al. [17](CPN, 𝑇=96)(†) MM2021 35.5 41.3 36.6 39.1 42.4 49.0 39.9 37.0 51.9 63.3 40.9 41.3 40.3 29.8 28.9 41.1
Ours(HRNet, 𝑇=300) (†) 35.1 40.2 36.1 38.9 40.0 44.7 39.2 37.8 45.8 53.7 39.2 39.9 38.6 29.9 28.3 39.2

Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Wang et al. [51](CPN, 𝑇=96)(†) ECCV2020 31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 35.0 24.9 23.0 34.5
Liu et al. [31](CPN, 𝑇=243)(†) CVPR2020 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Zheng et al. [63](CPN, 𝑇=81)(†) ICCV2021 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Hu et al. [17](CPN, 𝑇=96)(†) MM 2021 29.8 34.4 31.9 31.5 35.1 40.0 30.3 30.8 42.6 49.0 35.9 31.8 35.0 25.7 23.6 33.8
Ours(CPN, 𝑇=81)(†) 31.7 34.8 30.7 34.2 33.2 39.1 32.5 32.3 39.6 45.7 33.4 35.1 33.1 25.8 25.6 33.7
Ours(CPN, 𝑇=300)(†) 30.3 34.6 29.6 31.7 31.6 38.9 31.8 31.9 39.2 42.8 32.1 32.6 31.4 25.1 23.8 32.5
Wang et al. [51](HRNet)(†) ECCV2020 28.4 32.5 34.4 32.3 32.5 40.9 30.4 29.3 42.6 45.2 33.0 32.0 33.2 24.2 22.9 32.7
Wehrbein et al. [52](HRNet, 𝑇=200)(†) ICCV2021 27.9 31.4 29.7 30.2 34.9 37.1 27.3 28.2 39.0 46.1 34.2 32.3 33.6 26.1 27.5 32.4
Hu et al. [17](CPN, 𝑇=96)(†) MM 2021 27.7 32.7 29.4 31.3 32.5 37.2 29.3 28.5 39.2 50.9 32.9 31.4 32.1 23.6 22.8 32.1
Ours(HRNet, 𝑇=300)(†) 27.2 31.6 27.8 31.2 30.1 34.4 28.6 29.1 36.2 46.2 31.1 32.8 30.2 22.7 21.6 30.7

Table 2: The MPJPE (mm) results of detailed comparison with the state-of-the-arts on the H36M dataset under Protocol #1 (Top
table) and Protocol #2 (Bottom Table). 𝑇 is the number of input sequence length of 2D keypoints, (†) represents using the
temporal information. The best and second-best results are highlighted in red and blue color, respectively.

HumanEva-I [45] records three subjects from three camera views
at 60 Hz. In the same manner of [31, 63], we conduct training and
testing on the dataset with two actions (Walk and Jog) in subjects
S1, S2, and S3. The MPJPE and P-MPJPE are applied to evaluate the
proposed method.

4.3 Comparison to the State-of-the-arts
4.3.1 Results on H36M. To evaluate the effectiveness of our
method, we first quantitatively compared our method with the
state-of-the-arts on the H36M benchmark in Table 2. The input 2D
keypoints are obtained from CPN [9] and HRNet [46]. The previous
methods which we compared with include both the image-based
and video-based (mark with †) approaches. It can be seen that
the video-based methods mostly have better performance than the
image-based methods, because the former utilize more temporal in-
formation in videos. As shown in Table 2, our method outperforms
the previous works by a large margin under both Protocol #1 and
Protocol #2. Specifically, for the CPN [9] detector data, our approach
with 𝑇 = 300 achieves the best result of average MPJPE of 40.6mm
under Protocol #1 (3.7mm improvement compared to SOTA [17]).
We also get the second-best when we shorten the input sequence
length to𝑇 = 81. Besides, for the HRNet [46] detector data, we also
obtain the best performance on the better input keypoints (2.0mm
improvement compared to SOTA [17]). More importantly, it can be
observed that our method performs even better on hard actions (e.g.,
Smoke, Sit, and SittingDown).

To further explore the upper bound of the proposed method,
we compare our model with the prior methods with the GT 2D
keypoints as input. This can eliminate the effect of the quality of
the 2D detection data for the 2D-to-3D lifting methods. As shown
in Table 3, our method significantly outperforms all the others in
terms of MPJPE under the Protocol #1. It demonstrates that if a
more powerful 2D pose estimator is available, our U-CondDGCN is
able to produce more accurate 3D human poses.

4.3.2 Results on 3DHP. Table 4 shows the detailed results of
different methods on the 3DHP benchmark. It can be seen that our
approach achieves significantly better PCK and AUC scores and
MPJPE than other methods including both the image-based and
video-based methods. The result demonstrates that our method
has strong generalization ability, which is beneficial from the im-
buing of uncertainty representation into model learning. Besides,
GCN-based methods [17, 51] also obtain good performance, which
have a strong modeling ability of human structure. But the pure
CNN-based method [31] gets a low accuracy because it without
considering the skeleton prior and uncertainty of the poses.

4.3.3 Results onHumanEva-I. Table 5 shows results onHumanEva-
I and the generalization to a much smaller dataset. We followed the
setting of [43, 63] to conduct the 2D detection data (based on the
pre-trained Mask R-CNN 2D detector). The high error on “Walk”
of the third column is due to corrupted mocap data [43]. Our pro-
posed method outperforms the previous works in average MPJPE
under Protocol #1, which demonstrates there is a great ability of
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Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Pavllo et al. [43](𝑇=243) CVPR2019 - - - - - - - - - - - - - - - 37.2
Liu et al. [31](𝑇=243) CVPR2020 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Wang et al. [51](𝑇=96) ECCV2020 23.0 25.7 22.8 22.6 24.1 30.6 24.9 24.5 31.1 35.0 25.6 24.3 25.1 19.8 18.4 25.6
Zheng et al. [63](T = 81) ICCV2021 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
Hu et al. [17](CPN, 𝑇=96)MM 2021 - - - - - - - - - - - - - - - 22.7
Ours(𝑇=81) 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
Ours(𝑇=300) 22.1 23.1 20.1 22.7 21.3 24.1 23.6 21.6 26.3 24.8 21.7 21.4 21.8 16.7 18.6 22.0

Table 3: Quantitative comparison of MPJPE in millimeters (mm) on Human3.6M under Protocol #1 using 2D ground truth (GT)
keypoints as input. All of our comparison methods are based on video, which can better compare the upper bounds of the
approaches. The best results are highlighted in red.

Method PCK[↑] AUC[↑] MPJPE[↓]
Mehta et al. [37] ACM TOG 2017 79.4 41.6 -
Lin et al. [29](†) BMVC2019 83.6 51.4 79.8
Li et al. [25] CVPR2020 81.2 46.1 99.7
Wang et al. [51](†) ECCV2020 86.9 62.1 68.1
Gong et al. [15] CVPR2021 88.6 57.3 73.0
Zheng et al. [63](†)ICCV2021 88.6 56.4 77.1
Hu et al. [17] MM 2021 97.9 69.5 42.5
Ours(𝑇=27)(†) 98.2 70.1 53.3

Table 4: Quantitative comparison on MPI-INF-3DHP with
PCK, AUC, and MPJPE metrics. ↑ indicates the higher, the
better, while ↓ indicates the lower, the better. The best and
second-best results are highlighted in red color. † indicates
the video-based methods.

our model to learn general feature even in a small dataset. Besides,
pure transformer-based method [63] performs badly because of
the limitation of transformer in small datasets. We also introduce
the transformer but keep it as light-weight to get the ability that
utilizes it not only in large datasets.

Protocol #1 Walk Jog Avg.

Pavllo et al. [43](𝑇=81) 13.1 10.1 39.8 20.7 13.9 15.6 18.9
Zheng et al. [63](𝑇=43) 16.3 11 47.1 25 15.2 15.1 21.6
Zheng et al. [63](𝑇=43, FT) 14.4 10.2 46.6 22.7 13.4 13.4 20.1
Ours(𝑇=43) 13.1 10.7 37.9 21.2 17.2 18.8 18.1

Table 5: Comparison on the HumanEva-I benchmark under
Protocol #1. FT indicates pre-training on the H36M dataset
and then fine-tuning on the HumanEva-I dataset. The best
results are highlighted in red color.

4.4 Ablation Study
To evaluate the impact and performance of each component in our
model, we evaluate their effectiveness in this subsection. The Hu-
man3.6M dataset and the CPN [43] detector are utilized to provide
the 2D keypoints.

4.4.1 Impact of model components. As shown in Table 6, we
set the input sequence length to 300 and use the PoseFormer [63] as
the baseline, then we change the dimension size of channel 𝑑 and
model depth (number of encoder layers) 𝑑𝑒𝑝𝑡ℎ. Besides, we regress

Method DUE 2D-PD GTE MPJPE (mm) Params (M)
Baseline (𝑑 = 64, depth = 8) × × × 67.6 76.51
Baseline (𝑑 = 128, depth = 8) × × × 59.8 305.06
Baseline (𝑑 = 256, depth = 8) × × × 𝑛𝑎𝑛 1218.30
Configure 1(𝑑 = 256, depth = 8) × × ✓ 49.8 4.68
Configure 2(𝑑 = 256, depth = 8) × ✓ ✓ 43.9 4.68
Ours (𝑑 = 256, depth = 8) ✓ ✓ ✓ 40.6 4.68

Table 6: Ablation study on each component introduced to our
method. The evaluation is performed on the H36M dataset
with MPJPE (mm). DUE indicates the Depth Uncertainty Esti-
mation component, the 2D-PD is 2D Probabilistic Distribu-
tion module, and the GTE represents the GCN-Transformer
Encoder applied in the proposed method.

the 3D pose sequence each time to construct the seq2seq model,
which is also different from [63]. It can be observed that with the
increment of the model depth and dimension size of channel, the
model parameters of the baseline increase rapidly and becomes
too large to train efficiently. After enabling the GCN-Transformer
Encoder (GTE) module in the Configuration 2, the model parameter
is greatly reduced and can be easier to train. This mainly because
the combination of GCN and transformer is effective, and the spatial
human structure prior modeling ability of GCN is efficient. With
the 2D Probabilistic Distribution (2D-PD) component turning in
the Configuration 2, the performance obtains a significant grow-
up. Finally, we apply the DUE (Depth Uncertainty Estimation) to
model the uncertainty information on the depth dimension, and
our method achieves the best performance under Protocol #1. The
ablation study on each component reveals that the uncertainty-
aware information plays an important role in the 2D-to-3D lifting
task. Moreover, the GTE provides the ability on efficiently modeling
the spatial and temporal relationships.

4.4.2 Impact of the model parameter setting. We conduct
the ablation study on the dimension size of channel 𝑑 , the num-
ber of GCN layers 𝐿𝐺𝐶𝑁 , and the number of transformer layer
𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 . We choose 27-frames setting in this study from the
perspective of experimental efficiency. As shown in Table 7, the
number of GCN layers brings few parameters, the main increase
of model parameters comes from the dimension and the number
of transformer layers. We finally choose the parameter combina-
tion (𝑑 = 256, 𝐿𝐺𝐶𝑁 = 2, 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 = 8) to better balance the
computation efficiency and performance.
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𝑑 𝐿𝐺𝐶𝑁 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 Params (M) MPJPE (𝑚𝑚) 𝐸𝑠

128 1 2 0.43 57.4 50
256 1 2 1.52 49.2 80
512 1 2 5.66 48.9 150
256 2 2 1.67 48.2 80
256 4 2 1.98 48.2 100
256 8 2 2.59 48.1 100
256 2 4 2.57 46.1 120
256 2 8 4.68 43.1 120
256 2 16 8.90 42.8 300

Table 7: Ablation study on different parameters. The eval-
uation is performed on the H36M benchmark with MPJPE
(mm). 𝐸𝑠 indicates training epochs to get convergence. The
best choice of parameter combination is highlighted in bold.

5 QUALITATIVE RESULTS
Qualitative results of spatial and temporal relationship mod-
eling. We conduct visualization of the relationships on spatial
and temporal domains to verify the effectiveness of the proposed
encoder. A video sequence of specific action (Sitting) in H36M
benchmark is selected for illustration. We visualize the average
spatial learned adjacent matrix of joints in the GCN module and
the temporal attention map of frames in the transformer module,
respectively. The spatial learned adjacent matrix has a shape of
𝑁 ×𝑁 , where 𝑁 is the number of joints of the pre-defined skeleton,
while the temporal attention map has a shape of 𝑇 ×𝑇 , where 𝑇
is the length of the input frames. As shown in Figure 3, there are
different weight distributions in the spatial and temporal domains.
For the spatial matrix (left of Figure 3), it is clear that the matrix
mainly aggregates information among their near neighbor joints,
some nodes can aggregate long-range information. For the tempo-
ral attention map (right of Figure 3), the videos with fast movement
like Sitting, transformer captures attention mainly from itself and
its neighboring frames, thus the weight distribution is more smooth
than the spatial matrix.

Qualitative comparison with SOTA methods. Our method
can be chosen to estimate the 3D pose predictions with/without cor-
responding uncertainty parameters. For some applications, which
take 3D pose estimation as the upstream task (e.g., skeleton ac-
tion recognition), the uncertainty parameters may help them to
better learn features of the estimated pose. We enable our model
to visualize the uncertainty parameters and estimated poses for
better observation. As shown in Figure 4, with more complex poses,
predictions of the model have larger uncertainty, and the blue area
is larger. This demonstrates that our method is able to predict ac-
curate uncertainty information on depth for some self-occluded
keypoints or complex poses. Therefore, the final 3D pose optimized
with the uncertainty information is reasonable and meaningful.
And for the 2D detection error, our method can also calibrate it
from the perspective of probabilistic distribution, as shown in the
second row of Figure 4.

6 CONCLUSION
In this paper, we proposed an uncertainty-aware method to opti-
mize the 𝑑𝑒𝑝𝑡ℎ and 𝑥−𝑦 coordinates for 3D human pose estimation,

[0] Hip
[1] R Hip
[2] R Knee
[3] R Foot
[4] L Hip
[5] L Knee
[6] L Foot
[7] Spine
[8] Thorax
[9] Neck
[10] Head
[11] L Shoulder
[12] L Elbow
[13] L Wrist
[14] R Shoulder
[15] R Elbow
[16] R Wrist

Figure 3: Visualization of spatial learned adjacent matrix
among body joints and temporal attention map among input
frames. The weights are normalized to [0, 1], and the light
color indicates higher weight.

Depth Uncertainty of 
Occluded Left Wrist 

Depth uncertainty due to depth ambiguity

2D Distribution uncertainty due to detection error

CDG2D Detection Input Ours GT

2D Distribution Uncertainty of 
Detection Error

Figure 4: Qualitative comparison between our method and
the SOTA approach CDG [17] on H36M test set S9, S11. The
blue circles and arrows highlight locationswhere ourmethod
clearly has better results. The uncertainty of depth and 2D
detection input are shown at the right column.

respectively. The employed evidential deep learning is able to quan-
tify the uncertainty of depth ambiguity. Moreover, the explored 2D
probabilistic representation can efficiently model the distribution
uncertainty of the 2D detection input and calibrate its deviations.
The efficient GCN-Transformer based encoder enables our model to
provide effective spatial and temporal correlations in keypoints se-
quence for the uncertainty estimation. Importantly, this work opens
a new baseline of uncertainty learning on 3D human pose estima-
tion from the monocular video. Extensive experiments demonstrate
that our method achieves the state-of-the-art performance.
Limitation. One limitation of the proposed method is that the
performance is relatively degraded when dealing with fast-motion
in-the-wild videos, which is affected by the poor 2D keypoints. The
failure cases are shown in the supplementary materials.
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A DETAILED DERIVATIONS
As mentioned in Section 3.1.1, following the previous work [44],
we assume that the depth prediction follows Gaussian distribution
with unknown mean 𝜇 and variance 𝜎2:(

𝜇 | 𝜎2
)
∼ N

(
𝜇0,

𝜎2

𝑘

)
, 𝜎2 ∼ Inv−𝜒2 (𝛼, 𝛽), (11)

where the parameters of the distributions are (𝜇0, 𝑘, 𝛼, 𝛽). Therefore,
the model prediction can be formatted as:

E[𝜇] =
∫ ∞

𝜇=−∞
𝜇𝑝 (𝜇)d𝜇 = 𝜇0, (12)

where the 𝜇0 indicates the prediction on depth. And and uncertainty
of depth prediction is represented as:

Var[𝜇] =
∫ ∞

𝜇=−∞
𝜇2𝑝 (𝜇)d𝜇 − (E[𝜇])2

= 𝜇20 −
𝜎2

𝑘
− 𝜇20

= 𝜇20 −
𝛽
𝛼−1
𝑘

− 𝜇20

=
𝛽

𝑣 (𝛼 − 1) , 𝛼 > 1.

(13)

In this way, we can take the parameters (𝜇0, 𝑘, 𝛼, 𝛽) to represent
the uncertainty of model prediction on depth.

To imbue the practical meanings to these parameters in probabil-
ity distribution during training, we apply the variance of the sample
mean to supervise the depth uncertainty, which is a different and
more simple design than previous works [2]:

L𝑢 =

���� 𝛽

𝑘 (𝛼 − 1) − Var[𝜇]
���� , (14)

where the 𝜇 indicates the samples in the training batch.

B ABLATION STUDY ON UNCERTAINTY
ESTIMATION

To further explore the effect of the uncertainty estimation module,
we make the ablation studies on depth uncertainty and 2D distri-
bution uncertainty. As presented in Table 8, removing the depth
uncertainty estimation (DUE) module leads to 3.3 mm increase in
error, and without the 2D probabilistic distribution (2D-PD), the
proposed method increases 4.1 mm in errors. Without these two
uncertainty-aware modules, the performance falls 9.0 mm in terms
of MPJPE. The experiment demonstrates the benefit of uncertainty
estimation module in our proposed framework. Moreover, it also
shows the performance of our proposed encoder.

C ABLATION STUDEY ON INPUT SEQUENCE
LENGTH

Our method utilizes the temporal information to improve the esti-
mation performance by employing the GCN-Transformer encoder.
Basically, the longer input sequence of the model, the better perfor-
mance it obtains, because of more available temporal information.
Figure 5 illustrates the results of our method with different lengths

of input frames. It can be observed that the proposed method gets
larger gains with more frames fed into the model. The error has
a significant decrease of 32.2% from the single-frame setting to
300-frames setting with three input data, which indicates the ef-
fectiveness of our method in capturing long-range dependency
across frames with the large receptive field. There is no much sig-
nificant improvement when the input sequence length is longer
than 300, thus we pick 300-frame setting as our final choice. Besides,
the ablation study also shows that our method can work well on
single frame, which means the temporal transformer module is
automatically abandoned in this case.

Method MPJPE (mm ↓) Δ
Ours (DUC + 2D-PD) 40.6 −
w/o DUE 43.9 3.3
w/o 2D-PD 44.7 4.1
w/o DUC & 2D-PD (only GTE) 47.6 7.0

Table 8: Ablation study on uncertainty-aware modules in the
proposed method. The DUC indicates the depth uncertainty
estimation, 2D-PD is 2D probabilistic distribution, and GTE
is the proposed GCN-Transformer encoder. The evaluation is
performed on H36M with the MPJPE metric under Protocol
#1. ↓ indicates lower is better.
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Figure 5: Ablation study on different 2D detection sequence
lengths withMPJPE (mm) under Protocol #1. We apply differ-
ent input data (CPN [9], HRNet [46], and 2D ground truth.)

D DETAIL COMPARISONWITH SOTAS
To further illustrate the differences between the proposed method
and previous SOTAs, we compare our method with these works [5,
17, 31, 43, 63]. The comparison items include the parameters, FLOPs,
FPS, andMPJPE. The experiment setting follows the PoseFormer [63].
As shown in Table 9, our model achieves the best performance
and highest inference speed on H36M dataset with longer input
sequence length while relatively small parameters and low com-
puting cost. This experiment shows that our method can be easily
applied to multi-paralleled tasks and is able to maintain real-time.
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A. Inaccurate 2D Keypoints

C. Extremely Rare Pose

B. Rapid Motion of Hands

D. Fast Switching of Viewpoints

Figure 6: Failure cases. We show the input image, 2D detection keypoints, and corresponding estimated 3D poses in the wild.
See Section E for details.

Method 𝑇 Parameters (M) FLOPs (M) MPJPE FPS
Pavllo et al. [43] 81 12.79 25.48 47.7 1121
Pavllo et al. [43] 243 16.95 33.87 46.8 863
Liu et al. [31] 243 11.25 - 45.1 66
Chen et al. [5] 81 45.53 88.9 44.6 315
Chen et al. [5] 243 59.18 116 44.1 264
Zheng et al. [63] 81 9.60 1358 44.3 269
Hu et al. [17] 96 3.42 - 43.4 289
Ours 300 4.68 148 40.6 1720

Table 9: Comparison on parameters, FLOPs, MPJPE, and in-
ference speed (FPS). The evaluation is performed on H36M
under Protocol #1.

E FAILURE CASES
While our method can estimate accurate human pose results. We
also observe some failure cases when inference in the wild. We
follow the VideoPose3D [43] to render the estimated 3D pose in
the wild. It [43] provides a convenient interface to generate 2D
keypoint predictions from videos without manually extracting indi-
vidual frames. The Mask R-CNN [16] is utilized to generate the 2D
keypoints. As shown in Figure 6 A., the estimation accuracy tends
to be lower in some inaccurate 2D keypoints. For the rapid motion
of end of limbs, our method fails to estimate each frame (Figure 6 B.).
Extremely rare poseswill also lead to inaccurate 3D pose results (Fig-
ure 6 C.), which is due to poor supervision on limited training data.
And some videos with fast switching of views (Figure 6 C.) leads to
failure case because of broken temporal consistency.

5113


	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Depth uncertainty estimation
	3.2 Distribution uncertainty estimation of 2D detection
	3.3 GCN-Transformer encoder (GTE)
	3.4 Loss Functions

	4 Experiments
	4.1 Implementation Details
	4.2 Datasets and Metrics
	4.3 Comparison to the State-of-the-arts
	4.4 Ablation Study

	5 Qualitative Results
	6 Conclusion
	References
	A Detailed Derivations
	B Ablation study on Uncertainty estimation
	C Ablation studey on input sequence length
	D Detail comparison with SOTAs
	E Failure Cases



